This article discusses the challenges and opportunities within the digital health technology postmarketing safety and surveillance arena faced by many manufacturers. The authors discuss the opportunities and challenges these devices and technologies may present, compared to the traditional healthcare products in the regulated arena.

Introduction

The term digital health solution is used to categorize technology available through a multitude of devices which provide information to their end user, aimed at improving healthcare and outcomes. Healthcare providers, patients and consumers are using these solutions on a variety of platforms such as smart phones, social networks and internet applications and may not realize that these products fall under FDA’s regulatory oversight to protect the end users. The varying levels of adverse outcomes the user could experience, including serious injury and/or death, impact the solutions regulatory status under FDA.

Digital health solutions are becoming more prevalent as society becomes more
technologically driven and dependent on these radical advancements in the way we obtain information. Pharmaceutical organizations, technology vendors and medical device organizations are creating health solutions for adherence, patient engagement, behavior modification and companion solutions for treatment. While these advancements in technology are continuously evolving, they share the common goal of assisting healthcare professionals and patients with the ability to further diagnose, treat, access information and educate. The accessibility, convenience and mobility of digital health solutions have created a cultural shift in the way we think about and provide healthcare. However, traditional pharmaceutical, biologic and medical device organizations have realized through their experience in product development that postmarketing surveillance is a critical ongoing phase that may identify opportunities or risks that were not considered prior to product entry. This inherent challenge associated with any of these products beg the following questions:

- What happens when my application has a software bug that miscalculates a dose?
- How can that be reported?
- What types of digital applications require reporting (regulated versus nonregulated)?
- How can I perform a field correction or recall on a digital product that’s marketed?

It is well understood that many products have different types of inherent risks as well as benefits and digital health solutions are not free from these considerations.

Background

The legislative enactment of the 21st Century Cures Act redefined what constitutes a medical device and clarified software applications which could be excluded. While this seemed to increase transparency surrounding the classification of medical devices and digital health solutions, this presented challenges companies’ compliance with postmarketing surveillance reporting requirements.

At a high level, if the intended use of the software function is related to the diagnosis, cure, mitigation, prevention or treatment of a disease or condition, the product falls within the definition of a medical device and thus becomes a regulated product. General wellness products’ intended use relates to helping people manage their health and wellness, promote healthy living and gain access to useful information when and where they need it. However, FDA states that device regulations will not be applied to the general wellness products.

Digital health incorporates technology and therapeutics to provide accessible tools such as
mobile Health (mHealth), health Information Technology (IT), wearable devices, telehealth/telemedicine and personalized medicine. These are utilized by healthcare providers and others to reduce inefficiencies, improve access, reduce costs, increase quality and provide more personalized medicine. Patients can use digital technology to track and manage disease states. A spectrum of intended use and expected outcomes exists due to the variety of end-users of the digital solution. Digital health solutions’ spectrum of intended use and expected outcomes is further complicated by the increased accessibility of these products to the end-user. The expanding consumer base introduces risks which vary in type and impact to its end-user.

While it is understood that medical devices and all products have inherent risks, it cannot be overlooked that new technology driven solutions may create a different approach to how we traditionally think about postmarketing activities for medical devices. Digital health solutions present a variety of unique challenges compared to traditional medical devices, drugs and biologics. The novel technology has unique attributes that need to be considered (i.e., cybersecurity). Drugs, biologics and medical devices have clearly defined classifications describing the level of impact the event may or have had, which provides an appropriate path and subsequent actions forward for the responsible personnel. For example, medical device reporting is one of the postmarketing surveillance tools used to monitor device performance, detect potential safety issues and provide input for benefit-risk assessments of these products. According to 21 CFR 803, there are mandatory reporting requirements for manufacturers, importers and device user facilities and voluntary reporting from healthcare professionals, patients and consumers. Manufacturers and importers of medical devices are required to submit reports to FDA whenever they are aware of information which suggests that a marketed device may have directly caused or contributed to a patient’s serious injury and/or death. Often, patients will report any issues to the manufacturer rather than directly to FDA, so it is the manufacturer’s responsibility to convey such information to FDA.

Some of the challenges that could be facing digital solution postmarketing surveillance, including interoperability and reporting responsibilities, field corrections and recalls and how real-world evidence can be captured will be discussed.

Interoperability and Reporting Responsibilities

Interoperability occurs when medical devices and digital health solutions interact with one another. As interoperability becomes more prevalent, safety of the patient and operator is an important consideration. For example, a dosing calculator (digital solution) transmits weight in kg, but the receiving device (medical device) assumes measurements in pounds.
This can result in delivering the wrong dosing of a medication to a patient which could potentially result in serious injury and/or death. The challenge lies in determining which party is responsible for reporting the adverse event. It is no longer as straightforward as traditional medical device reporting because now there are multiple components involved. Appropriate safety considerations during initial device design can prevent unforeseen safety issues from occurring. Alignment between medical devices and digital health solutions in the interoperability space is critical, especially on decisions regarding which party would be responsible for adverse event reporting.

Field Correction and Recalls

There is a big challenge of recalling a digital solution. Users download the application onto their mobile devices, so if there is an issue with it, how do we make sure that the software is not used anymore or removed? Importantly, there needs to be announcements of the issue and advisory of removal of the application. Using social media such as Twitter or Facebook can be effective. It’s possible to pull the application from the store and upload a new one, but that presents challenges for users that already downloaded the initial faulty application. In that case, using push messages over a smartphone to notify the user to delete the application can be considered. Ultimately, no matter which route is taken, it’s important to resolve the issue quickly to protect the patient.

Collection, Monitoring and Real-World Evidence

The collection and monitoring of pharmacovigilance data is imperative to understanding the associated risks and benefits of a product whether it be a drug, device, or even digital solution. Adverse event reports undergo extensive review and are utilized by both FDA and manufacturers to aid in regulatory decisions and enhance safety measures, together achieving better patient outcomes. An inherent challenge which prevents digital health solutions from being reported stems from unawareness from the end-users such as patients and healthcare professionals that these products are regulated. Combination products, such as insulin pens, that have drug and device components seem to carry more risk to individuals compared to a phone application that calculates antibiotic dosing regimens. Due to the nature of ambiguity of necessity to report, education must be provided to end-users so that they know to report adverse events associated with the application.

FDA developed the MedWatcher Mobile App to ameliorate the voluntary reporting process and increase accessibility. The intent is to encourage patients and/or providers to report via the app on their mobile device, as compared to the traditional, cumbersome
methods of mail, telephone or computer. This app does not replace the mandatory medical
device reporting requirements for manufacturers.

In addition to the MedWatcher app, FDA announced a new mobile technology to improve
the collection of real-world evidence from the patient’s mobile device. Real-world
evidence is collected from a variety of platforms and populations, allowing for an enhanced
understanding of the product’s role in therapy. This potentially could eliminate variability
in patient self-reporting, as well as the need to conduct continued safety monitoring via
postmarketing studies. The MyStudies app was developed to expand the diversity of health
information available for trials and studies as well as capturing patient perspective and
experiences. The app will be adaptable to sponsors for their specific monitoring needs, as
well as increase compliance with data authenticity, integrity and confidentiality. Enabling
sponsors to customize the app to capture additional data through questionnaires, symptom
scales, etc., will provide a comprehensive approach to safety monitoring. As the app
becomes more widely used and robust, there may be an opportunity to eliminate
manufacturer responsibility of reporting by simply bypassing the manufacturer, the
adverse event is captured in FDAs’ system, thus ensuring compliance through removing
human error.

Conclusion

As we are in the age where many people are engulfed in modern technology and are
grasping this idea to not only use this technology for things such as social media, but also to
live a healthier lifestyle, we must consider the responsibilities that come with digital health
solutions. Due diligence must be taken upon manufacturers to allow digital health solutions
to be a part of people’s lives and wellness, but also assist the digital manufacturers with
their need for safety and efficacy, thus a win-win for everyone involved.

In contrast to drugs, biologics and medical devices that have standardizations on how to
deal with postmarketing surveillance, digital health solutions present many unique
challenges. Issues with interoperability and deciding which party is responsible to report a
safety concern becomes more prevalent because software and device now interact
together. Field corrections and recalls become more challenging because the digital
solution is in the user’s hands after it is downloaded. However, good also can come from
digital health solutions as they can be used as a means of collecting real-world data to drive
safer advancements in the future.

Digital health solutions may have lower risks at face-value compared to Clinical Decision
Software (CDS) and Software as a Medical Device (SaMD); therefore, industry should look
toward the application of the FDA’s general stance as illustrated within the 2016 draft SaMD Guidance, thus allowing the establishment of robust internal processes to the standard that SaMD is currently held to.13,14

References
5. 21 CFR 803.15-803.18 Section 803 Volume 8.
12. Ibid.
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/Guida

https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/Guida

About the Authors

Enya Guo is a project coordinator in Global Regulatory Affairs at Merck, based in Rahway, NJ. She started at Merck as a professional pharmacy student on rotation in Global Regulatory Affairs. Through her experiences, she developed an interest for working within the pharmaceutical industry. Later, she continued as a contractor to support various projects to impact patient care globally. She is a PharmD candidate at Rutgers University-New Brunswick and is expected to graduate in May 2019. She can be contacted at enya.guo@merck.com.

Jessica L. Hale is a senior project coordinator in Global Regulatory Affairs and Clinical Safety, with Merck based in Rahway, NJ. Hale joined Merck as a regulatory affairs intern while entering her third year of Pharmacy School, with prior pharmacy experience in both the hospital and community settings in addition to conducting pharmaceutical formulation research. Combining her passion for patient care with her curiosity and analytical mindset, Hale has continued her role within regulatory affairs as a contractor, working to optimize patients access to therapies. She is expected to receive her Doctor of Pharmacy degree in May 2019. She can be contacted at jessica.hale@merck.com.

George Cusatis, MS RAC is associate director of Merck’s Device and Digital Health Group, based in Upper Gwynedd, PA. In this role, he supports the Medical Device and Combination Product (MDCP) and digital health solutions business across Merck. Cusatis provides guidance and support for more than 40 products, including auto injectors, prefilled syringes, digital health software and contraceptives. He has extensive experience with the product development lifecycle, including product safety, regulatory submissions, quality assurance and clinical affairs. Custis received a MS in regulatory affairs/quality assurance from Temple University and a MS in bioengineering
from Syracuse University. He is a member of the RAPS, ASQ and DIA professional societies and holds ISO certifications in Quality Management Systems Requirements (ISO 9001), Information Security Management (ISO 27001) and Medical Devices Quality Management Systems (ISO 13485). He can be contacted at george.cusatis@merck.com.

Darin S. Oppenheimer, DRSc, is executive director of the Device and Digital Health Group, focusing on Medical Devices and Combination Products at Merck, based in Upper Gwynedd, PA. Oppenheimer joined Merck with 16 years of experience in many facets of the product development lifecycle, including regulatory submissions and due diligence. He has actively participated with industry trade organizations and on standards committees. His time as a research and development scientist focused on pharmaceuticals and medical device diagnostic applications for biomarker and drug discovery. Oppenheimer’s educational background includes two master’s degrees from Johns Hopkins University in biotechnology and regulatory science and a graduate certificate in biotechnology enterprise also from JHU. Oppenheimer completed his DRSc in regulatory science from the University of Southern California in 2016. Oppenheimer is a 2017 RAPS Fellow, serves on the Editorial Advisory Committee for RAPS Regulatory Focus and the Editorial Board of the Institute of Validation Technology. He can be contacted at darin.oppenheimer@merck.com.

Suraj Ramachandran, MS, RAC, is a director, regulatory affairs in the Device and Digital Health Group at Merck based in Rahway, NJ. Ramachandran is currently responsible for supporting various medical devices and combination products, such as auto injectors, prefilled syringes, inhalers and contraceptives. In addition, he is heavily involved in providing guidance for digital solutions and has led many development efforts regarding medical device software, intended for both domestic and international markets. In previous roles within industry, he was responsible for an infusion pump platform as well as supporting all new product development and lifecycle maintenance activities including regulatory submissions, design control, audits and CAPAs. Ramachandran holds a master’s degree in biomedical engineering from the University of Michigan. In addition, he has earned the RAPS RAC. He can be contacted at suraj.ramachandran@merck.com.

Dan Visco is an associate director working in the Device and Digital Health Group, focusing on medical devices and combination products at Merck, based in Upper Gwynedd, PA. Visco is currently pursuing a master’s degree in quality assurance/regulatory affairs from Temple University. He can be contacted at dan.visco@merck.com.

Cite as: Guo E, Hale JL, Cusatis G, Oppenheimer DS, Ramachandran S and Visco D. “Postmarket Surveillance in a Digital Health Solution World: Challenges and Opportunities
Regulatory News

FDA Pushes Back eCTD Deadline for Type III DMFs Again
29 January 2019 | By Ana Mulero

Cybersecurity: FDA, Industry Groups Welcome Joint Plan
29 January 2019 | By Ana Mulero